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Figure 1: We introduce AViSal360, a novel audiovisual saliency prediction model for 360º video. By leveraging spatial and semantic
audio information, in combination with an audiovisual saliency loss function, our model produces informed and accurate predictions.
For two scenes (gym, top, and orchestra, bottom), we show: an input RGB frame; the corresponding audio energy map (AEM),
representing audio spatial localization and computed as proposed in the present work; the ground truth saliency map; and the
saliency predicted by our method. For comparison purposes, we also include the saliency map computed with our method without
audio information (visual-only), and the resulting saliency map from three different state-of-the-art methods: AVS360 [10], Cokelek
et al.’s method [13] combined with the recent SST-Sal [4], and SVGC-AVA [57]. Our model is able to disambiguate between multiple
visually-salient regions (e.g., people) in cases in which saliency is conditioned by auditory information, predicting more accurately
the ground truth. The gym and orchestra videos are video 5018 and video 5009 in the D-SAV360 dataset [5], respectively.

ABSTRACT

Saliency prediction in 360◦ video plays an important role in model-
ing visual attention, and can be leveraged for content creation, com-
pression techniques, or quality assessment methods, among others.
Visual attention in immersive environments depends not only on
visual input, but also on inputs from other sensory modalities, pri-
marily audio. Despite this, only a minority of saliency prediction
models have incorporated auditory inputs, and much remains to be
explored about what auditory information is relevant and how to in-
tegrate it in the prediction. In this work, we propose an audiovisual
saliency model for 360◦ video content, AViSal360. Our model in-
tegrates both spatialized and semantic audio information, together
with visual inputs. We perform exhaustive comparisons to demon-
strate both the actual relevance of auditory information in saliency
prediction, and the superior performance of our model when com-
pared to previous approaches.

Index Terms: Audiovisual Saliency, Visual Behavior, Ambisonic
Sound, 360◦ Videos.

*e-mail: edurnebernal@unizar.es

1 INTRODUCTION

Understanding and modeling visual attention in dynamic 360◦ con-
tent can play a key role in different stages of the content cre-
ation and visualization pipeline in virtual reality (VR), from con-
tent design, to gaze-contingent rendering, compression algorithms,
or quality assessment techniques. While certain principles and tech-
niques can certainly be borrowed from attention modeling in con-
ventional 2D media, immersive environments have intrinsic charac-
teristics that make them different, mainly the ability of the user to
control the camera, and the placement of content surrounding the
viewer, i.e., with content outside the field of view (FoV) of the user
at any time instant. Since the study by Sitzmann et al. [46], one of
the first to thoroughly analyze viewing patterns in 360◦ content, a
number of works have focused on building computational models
of visual attention, both in 360◦ images [2, 31] and video [16, 4].
These works often predict attention in the form of saliency maps,
i.e., spatial representations of how conspicuous each point in a
scene is [4, 50, 11].

Most of the approaches so far have focused solely on visual
input, yet multimodality plays a key role in virtual reality. In-
put stimuli in VR are typically not only visual, but also involve
other sensory modalities, such as auditory, proprioceptive, or ol-
factory inputs [30, 18]. Besides vision, auditory input is arguably
the most common, and it can have a large impact on visual atten-
tion [9, 23, 34]. Examples of this are shown in Figure 1, where, for



two different scenes, we can see how audio clearly affects saliency:
The presence of sound coming from specific regions of the scene
(illustrated by the audio energy maps, AEMs) guides visual atten-
tion towards those areas, and away from others which could also
be potentially salient, as shown by the ground-truth saliency maps.
Besides, and as mentioned before, the existence of content outside
the FoV of the user increases the relevance of sound, since it can
provide information on events or objects outside this FoV. This can
also make audio a powerful cue to guide attention in VR, an out-
standing and much-researched problem [41, 44].

Interactions between visual and auditory modalities, however,
can be complex. Empirical research has shown, e.g., that the in-
clusion of audio stimuli can make visual stimuli more salient, even
if not co-located [52]. At the same time, spatially incongruent au-
ditory stimuli outside the field of view have been shown to cause
visual degradation in the viewer [29]. On a higher, more applied
level, audio has also been shown to impact the perceived rendering
quality [32, 35]. Despite the multiple advances in psychology and
neuroscience (see, e.g., the review by Fu et al. [19]), the complex-
ity of the interactions and the lack of a unified theory of attention
have motivated the use of data-driven techniques for computational
modeling of audiovisual saliency [10, 13, 57, 61].

In this paper, we present AViSal360, a robust and accurate
saliency prediction model for audiovisual 360◦ video. Our model
takes as input 360◦ RGB frames with equirectangular projection
and their corresponding audio in first-order ambisonics format1,
and learns to predict per-frame saliency. This is done through two
separate branches that extract relevant features from the visual and
auditory inputs, respectively. These are then fused into audiovi-
sual features, and fed into a decoding stage for the generation of
the final saliency map. Motivated by studies indicating that au-
dio information is often not effectively leveraged by audiovisual
saliency prediction approaches [1], we propose four key aspects
that improve audio processing and consideration, contributing to
our model’s success.

First, previous methods [57, 10, 61] have taken into account spa-
tial audio location through so-called audio energy maps (a repre-
sentation of sound spatial location, examples can be seen in the
insets in Figure 1, left column), computed from first-order am-
bisonics [37]. Instead, we upscale the audio signal to fourth-order
ambisonics, and employ a Minimum Variance Distortionless Re-
sponse (MVDR) method [8] that maximizes power in the signal
direction, effectively reducing noise and interference in the audio
energy map. Second, while previous approaches directly rely on
the raw audio signal or its spectrogram [10, 13], or extract features
from it using a classification network [61], we leverage audio em-
beddings from a single unified embedding space that binds multiple
sensory inputs together, offering a more reliable semantic represen-
tation [20]. Third, we employ a spherical convolutional long-short
term memory (ConvLSTM) network not only in the visual encod-
ing stage but also in the audiovisual decoding stage, allowing us to
more effectively capture the intricate spatio-temporal dependencies
between audio and visual compared to conventional 3D convolu-
tions. Finally, to help the model learn the relevance of audio and its
location, we employ a loss function that includes not only a tradi-
tional data term based on the Kullback-Leibler divergence between
ground truth and predicted saliency, but also an additional term that
enforces similarity between the predicted saliency and the audio
energy map. This term is based on an analysis of the correlation
between gaze fixations and audio energy maps.

We compare AViSal360 to state-of-the-art audiovisual video
saliency prediction approaches, and show that our model consis-
tently outperforms them. Besides, we have conducted thorough

1First-order ambisonics is a common encoding for spatialized audio; for
further explanation on it, please refer to Section S.2 in the supplementary
material.

ablation studies, and assessed the relevance of audio information
on the predictions, both in our and other methods. Our method
is able to effectively leverage audio information, and combine it
with visual features to generate reliable saliency maps in a wide
variety of scenarios. This cannot only further our understanding
of visual attention in audiovisual content but can also be leveraged
in applications and techniques that ultimately lead to more engag-
ing and appealing immersive experiences. Our code and model are
available on the project page at https://graphics.unizar.es/
projects/AViSal360_2024.

2 RELATED WORK

2.1 Visual Saliency Prediction
Since the seminal work of Itti et al. [25] in the late 90s, a vast body
of literature has been interested in studying and modeling saliency
from visual inputs. The first works were built upon heuristic-based
approaches, generally leveraging low-level features of the content
(see, e.g., the review from Itti [24]). Later, with the prolifera-
tion of data-driven methods, deep learning-based approaches took
over also in saliency prediction, and is and has been a very ac-
tive area of research, whether in conventional 2D images [51, 48],
video [49, 36], or 360◦ static content [38, 46]. Here, we focus on
visual saliency prediction on 360◦ video and refer the interested
reader to the thorough review of Borji [6] for the other modalities.

Dynamic content offers cues such as the movement of the ele-
ments (i.e., bottom-up attention) or the plot in a narrative sequence
(i.e., top-down attention), which can affect viewers’ attention and
cause the saliency of each frame to be influenced by previous
frames. One of the most common approaches to address this is the
use of long short-term memory (LSTM) architectures [12, 16, 27],
one particular type of recurrent neural network (RNN) that can re-
tain temporal information and leverage it to perform posterior pre-
dictions. These works combine LSTMs with the well-established
convolutional neural networks (CNNs), to enable the learning of
spatio-temporal features that can predict saliency. Xu et al. [56]
further proposed a saliency prediction network tailored to the par-
ticularities of 360◦ content, including spherical convolutions, pool-
ing, and loss function. Later, Bernal-Berdun et al. presented SST-
Sal [4], improving upon previous approaches by introducing a new
spherical loss function based on Kullback-Leibler divergence, and
a new paradigm of spatio-temporal feature extraction.

Visual saliency models, however, cannot account for the impor-
tance of audio when driving attention by themselves (see Figure 2,
top right). To tackle this, our model is built over the architecture
of SST-Sal for the visual feature extraction branch. Those visual
features, together with our audio feature extraction and audiovisual
fusion and decoding, allow us to overcome this limitation (Figure 2,
bottom right).

2.2 Audiovisual Saliency Prediction
Conventional 2D Content Predicting saliency in audiovisual

content is an outstanding problem that, within the last few years,
has been mostly tackled by leveraging deep learning techniques.
Tavakoli et al. [48] presented a two-branch model where they used
3D ResNets [22] to extract both visual and audio features, and
Shunyu et al. [58] proposed a multi-scale spatial fusion to combine
audio and visual features. Tsiami et al. [51] introduced STAViS,
which combined 3D ResNets with attention modules for visual pro-
cessing, and used SoundNet [3], a convolutional neural network
pre-trained for sound classification, for audio processing. Jain et
al. [26] introduced ViNet following a similar approach, although
using a model pre-trained on action recognition tasks. Later, Zhu et
al. [62, 60] presented LAVS, which combined a pre-trained VGG16
and LSTMs for visual processing, while using separable CNNs [43]
for audio processing (i.e., CNNs able to process both time and fre-
quency domains). Further approaches have been explored for audio

https://graphics.unizar.es/projects/AViSal360_2024
https://graphics.unizar.es/projects/AViSal360_2024
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Figure 2: Limitations of visual-only saliency prediction models in con-
texts where audio plays a critical role (video 0004 in the dataset).
Left column: Sample RGB frame (top) and corresponding ground
truth saliency (bottom). Despite the presence of a visually salient re-
gion consisting of two people talking (pink box), the ground truth in-
dicates that attention is mainly drawn towards a third person creating
noise (green box). Sound location is represented in the audio energy
map (yellow). Visual-only models, such as SST-Sal [4] (top right), fail
to account for this shift in attention due to the lack of auditory data
integration. Our audiovisual model (bottom right) accurately predicts
this shift, incorporating both visual and auditory cues effectively.

and visual feature fusion. While these works highlight the potential
of data-driven techniques for the prediction of audiovisual saliency
and an adequate representation of audio features, they are not di-
rectly applicable to saliency prediction in 360◦ content. VR incor-
porates an important attentional cue not present in traditional con-
tent, spatial audio. This new ability to locate sounds in 360◦ highly
impacts visual attention, while models intended for traditional con-
tent do not contemplate it.

360◦ Content Critical differences in data representation and
model architecture hinder the direct application of traditional 2D
models to 360° content. The projection of a 360◦ environment
onto a 2D plane introduces distortions or discontinuities that need
to be carefully considered in model design. Furthermore, in 360°
content, viewers control their point of view, and both visual and
auditory stimuli surround them, potentially including conspicuous
elements outside their field of view. Visual behavior in immer-
sive environments exhibits different trends and biases compared to
conventional 2D ones, with e.g., 360◦ content showing an equator
bias rather than a center bias [46, 5]. Consequently, audiovisual
saliency prediction in 360◦ content has emerged as a distinct sub-
field, leveraging insights from methods designed for traditional 2D
content, but requiring careful consideration and adaptation to these
unique challenges. Chao et al. [10] presented the first approach
in this direction, although they only used spatialized sound (in the
form of audio energy maps, AEMs) in inference time. Addition-
ally, their methodology relied on an equator center bias that did
not account for the longitudinal continuity of equirectangular con-
tent. Subsequent studies have also revealed an equatorial bias rather
than a central one along a specific longitude [5]. Later, Cokelek et
al. [13] introduced a method where they leverage any pre-trained
visual saliency prediction module and fuse its output with a heuris-
tic approach to extract spatial salient audio information. However,
this approach only extracts the most salient sound on the scene,
which may be overly simplistic in the case of multiple relevant au-
dio sources. Moreover, since audio and visual branches are inde-
pendent, inherent relations between sound and video are likely to be
missed. Zhu et al. [61] have lately presented a model that combines
the use of SoundNet [3] and AEMs for audio, and 3D LSTMs for
video. SoundNet, an audio classification model, can extract seman-
tic information from audio through transfer learning from a vision
classification model. However, this reliance on visual classification
labels is likely to introduce biases that affect the learned audio fea-

tures; in other words, the learned audio representations may miss
audio features that would be relevant for saliency prediction (but
are not for visual classification). Finally, Yang et al. [57] recently
used graph convolutional networks in their approach, albeit they
did not consider any temporal or semantic audio information. In
contrast with these methods, we leverage both spatial and semantic
audio information (with a state-of-the-art audio representation) and
take into consideration the temporal dimension of both the audio
and video channels.

Datasets of Viewing Behavior in Audiovisual 360◦ Content
Datasets featuring head and gaze data from viewers for visual-only
content are relatively abundant, both in images [46, 40, 17] and in
video [39, 15, 28, 59, 55]. However, datasets for audiovisual con-
tent are scarce or exhibit limitations. In this work, we leverage the
largest audiovisual 360◦ video dataset to date, D-SAV360 [5], cur-
rently the only publicly available dataset containing gaze data for
360◦ videos with spatialized audio. More information on this and
other existing datasets can be found in Section S.7 of the supple-
mentary material.

3 A MODEL FOR AUDIOVISUAL SALIENCY PREDICTION

Our model for audiovisual saliency prediction takes as input a se-
quence of 360◦ RGB frames with equirectangular projection and
the corresponding audio in first-order ambisonic format. We make
this choice because these are the most common formats for 360◦
video and associated spatialized audio. The output of the model is
a saliency map per input RGB frame. The model has an encoder-
decoder architecture, with separate branches for encoding the audio
and visual inputs. The audio and visual features extracted in the en-
coding branches are then fused, and fed into the decoding stage.
An overview of this is shown in Figure 3, while the next subsec-
tions (Sections 3.1 to 3.3) explain each of the stages in detail, and
motivate our design choices. This is followed by a description of
our loss function (Section 3.4) and training details (Section 3.5).

3.1 Audio Features
Our prediction model takes into account both accurate spatial lo-
cation of the audio sources (directional features), and the nature of
this audio information (semantic features). For the former, instead
of relying on the audio energy maps commonly used in previous
works [10, 57], we process the audio input to improve sound lo-
calization. For the latter, some approaches have tried to use the
raw audio signal or its spectrogram [10], or features extracted from
it with a classification network [61]; instead, we extract semantic
features with a state-of-the-art, modality-binding model.

Directional Features Spatial location of the auditory infor-
mation is encoded in directional features. As mentioned above, it
is common to find spatialized audio in first-order ambisonic for-
mat. From these, so-called audio energy maps (AEMs) can be
computed, which depict the spatial distribution of incoming sound
energy from the 360◦ soundscape, in equirectangular projection.
AEMs computed from first-order ambisonics [37], commonly used
in audiovisual saliency prediction [10, 57], cannot represent high
spatial frequencies. This leads to a lack of precision when localiz-
ing sound sources that can potentially have an effect on saliency
prediction, particularly when multiple nearby sound sources are
present. To enhance precision and resolve possible ambiguities
between sound sources, we upscale the audio to fourth-order am-
bisonics using an ambisonic upsampler [33], before computing the
corresponding AEMs. Following the upsampling, we employ the
Minimum Variance Distortionless Response (MVDR) method [8]
to generate the AEMs. Unlike earlier methodologies [37], MVDR
is a signal processing algorithm that minimizes total power at the
receiver while preserving power in the signal direction, effectively
reducing interferences, thereby reducing interferences and produc-
ing clearer AEMs. Figure 4 shows an example of this process,
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Figure 3: AViSal360’s architecture. Our model adopts an encoder-decoder architecture with distinct branches for visual and audio feature
extraction. Features are then concatenated and input into an Audiovisual Fusion module. This module, formed by spherical convolutional
layers, processes the features to produce a cohesive audiovisual representation, which will then be processed by the decoder to generate the
corresponding saliency map. Both the visual encoder and the audiovisual decoder utilize spherical ConvLSTMs, to facilitate learning of the
spatial and temporal characteristics of the data. The audio encoder consists of two main components: one extracts semantic audio features
using ImageBind-ViT [20], followed by embedding post-processing, while the other upscales ambisonic audio to fourth order and employs MVDR
to enable precise AEM extraction. Further details about the model can be found in Section 3 and in the supplementary material.

Conventional AEM Proposed AEMFrame

Figure 4: Left: RGB frame depicting a scene where audio orig-
inates from two key figures: a person singing in the center and
another seated to the right, speaking (video 5035). Conventional
AEMs (center ) provide a basic representation of sound locations us-
ing first-order ambisonics. In contrast, our proposed approach (right)
utilizes upsampled fourth-order ambisonics combined with the Min-
imum Variance Distortionless Response (MVDR) method, yielding
more precise spatial locations of the sound sources.

where our approach for computing the final AEMs resolves the po-
tential ambiguity between the different people (typically visually
salient) present. More implementation details can be found in Sec-
tion S.2 of the supplementary material. To test whether our pro-
posed AEMs would, as hypothesized, be better representations of
audio spatial location for saliency prediction purposes, we com-
puted to what extent gaze fixations fell within areas of high energy
in the AEMs. The results, showing that indeed the number was
significantly higher in the case of the proposed AEMs, can also be
found in Section S.2.1 of the supplementary material.

These proposed AEMs thus serve as a representation of audio
directional features and will be concatenated together with the se-
mantic audio features (explained next) and the visual features (Sec-
tion 3.2) before decoding them into saliency predictions, as illus-
trated in Figure 3.

Semantic Features The nature of the audio information also
plays a role in visual attention, since not all sounds carry equal sig-
nificance. For instance, conversations tend to catch our attention,
whereas sounds like birdsong may go unnoticed. Therefore, pro-
viding our model with audio semantic information can help it learn
which sounds are salient. We explored several alternatives for audio
semantic extraction (more details can be found in Section S.3 of the
supplementary material), finally leading to the use of ImageBind-
ViT [20]. ImageBind-ViT learns a single unified embedding space

that binds multiple sensory inputs together, including audio and im-
age data. The fact that the learned audio embeddings have been
shown to work well for multiple zero-shot tasks, and their align-
ment to their corresponding image embeddings, support their suit-
ability as semantic features for our task.

As mentioned above, visual features are concatenated with audio
directional and semantic features, and fed into the decoding stage,
explained in the next subsections.

3.2 Visual Features

Our visual encoder is built on a convolutional long short-term mem-
ory (ConvLSTM) architecture with spherical convolutions, which
has shown to be successful for visual saliency prediction [4]. The
use of LSTMs allows to capture and process temporal features from
sequential data, inferring temporal relationships between them.
ConvLSTMs [45], in particular, replace the fully-connected layers
of traditional LSTMs with convolutional operations that account for
the spatial relationships of sequential data. Finally, spherical convo-
lutions, introduced by SphereNet [14], employ a distorted kernel to
compute neighboring pixels in spherical space, accounting for the
particularities of the equirectangular representation. The equations
describing spherical ConvLSTMs can be found in Section S.3.1 of
the supplementary material.

While our visual feature extraction is similar to that of SST-
Sal [4], we exclude the use of optical flow (which is an input to
their model). This allows us to lift one of their assumptions, that of
having a static camera. We can thus handle videos in which optical
flow may be misleading for saliency estimation, including cases in
which the optical flow estimation is inaccurate, and cases in which
both the camera and the scene are moving. An illustration of these
cases can be found in Section S.6 of the supplementary material.

3.3 Audiovisual Fusion and Decoding

We leverage the previously extracted visual and audio features to
derive audiovisual features, which are then used to predict the final
saliency map. Initially, all feature vectors are introduced to an Au-
diovisual Fusion module to facilitate the learning of relationships
among visual, directional audio, and semantic audio features. The
joint inclusion of these features is important due to their intertwined



nature. For instance, localizing semantic audio features within the
image relies heavily on the information provided by directional au-
dio features. The module comprises two spherical convolutions
with LeakyReLU activations; further implementation details are
provided in Figure 3, as well as in Section S.3 and Table 2 of the
supplementary material. Then, the audiovisual features inferred by
the Audiovisual Fusion module are decoded into the saliency map
through another spherical ConvLSTM with specifications identical
to the encoder. Unlike other audiovisual 360◦ saliency prediction
approaches, our decoder also relies on ConvLSTMs, to account for
the spatiotemporal characteristics of the features and the previous
history at each time instant. This allows our model to establish tem-
poral dependencies between visual and audio features.

3.4 Audiovisual Loss Function
Our loss function is based on the well-established Kullback-Leibler
divergence (KLD) metric, enforcing similarity between two proba-
bility distributions, and is composed of two terms.

The first term is the traditional KL-divergence between the pre-
dicted saliency map P and the ground-truth saliency Q, KLD(Q,P).
In order to strengthen the influence of audio in the loss function
score, helping the model learn salient regions when audio is the
main feature driving attention, we add a second term that enforces
similarity between the predicted saliency map P and the audio en-
ergy map (AEM), which can be regarded as a probability distribu-
tion map. This term is further supported by the observation that a
large number of gaze fixations fall upon high density areas in the
AEM (see Section 3.1). The relative contribution of both terms is
weighted by a parameter γ , yielding our final audiovisual loss:

LAV = γ KLD(Q,P)+(1− γ) KLD(AEM,P) , (1)

where:

KLD(A,B) = ∑
i, j

wi, j Ai, j log
(

ε +
Ai, j

ε +Bi, j

)
, (2)

with A and B representing two probability density functions as maps
of shape W ×H, and wi, j is a spherical weighting that acknowledges
the distortions introduced by the equirectangular projection, ensur-
ing that the contribution of each pixel (i, j) is proportional to its
solid angle [56, 4]. Implementation details of the spherical weight-
ing can be found in Section S.3.2 of the supplementary material.

3.5 Training and Implementation Details
Our model is trained with the D-SAV360 dataset [5], since it is
the largest currently available dataset containing 360◦ videos with
ambisonic audio and gaze data. The 360◦ videos encompass varied
content with indoor, outdoor, complex, and simple scenes of diverse
topics (e.g., sports, music, or lectures). Videos were down-sampled
from 60 fps to 8 fps and reshaped to a 320 × 240 resolution to
reduce memory, computation, and processing requirements. Each
video is then divided into subsequences of 20 frames, correspond-
ing to 2.5 s. The ambisonic audio is also divided into segments
of equal duration. D-SAV360 provides the saliency maps obtained
from the recorded eye fixations of 87 participants.

AViSal360 has a size of 3,057 MB and the training took 5 h on a
Nvidia RTX 3090 with 26 GB. We used the following hyperparame-
ters for training: a stochastic gradient descent optimizer with a mo-
mentum of 0.9, a learning rate of 0.8, a batch size of 20 frames, and
a total of 120 epochs. The value of γ in our loss function (Eq. 1) was
empirically set to 0.75. To obtain a saliency map for each frame, we
pass through the network the entire sequence of 20 previous frames
(and corresponding audio information), providing the network with
previous history, and achieving seamless and more consistent pre-
dictions. The average inference time was 118.36 ms (STD = 0.36
ms) with sequences of 20 frames on a GPU with the aforementioned

specifications. Additional implementation and model details can be
found in Section S.3 of the supplementary material.

4 EVALUATION

In this section, we perform a thorough evaluation of AViSal360 us-
ing a k-fold cross-validation (k = 5) approach on the D-SAV360
dataset [5]. While this is done to mitigate the risks of overfitting
and provide results in a wide variety of scenes, please note that
the model never sees the scenes used for testing during training.
Section 4.1 introduces the metrics we employ. Then, Section 4.2
presents and discusses results from our model, and Section 4.3
compares it to the state-of-the-art models on audiovisual saliency
prediction. Finally, in Section 4.4 we conduct exhaustive ablation
studies to endorse our design decisions.

4.1 Metrics

There exist many different metrics to evaluate saliency prediction
models [7]. Each of them is more sensitive to some particular cases
(e.g., having more true negatives or more false positives), or resorts
to different criteria for the evaluation (e.g., distribution-based met-
rics vs. location-based metrics). We conduct our evaluations on
a subset of four of such well-established saliency metrics: linear
correlation coefficient (CC), similarity (SIM), normalized scanpath
saliency (NSS), and root mean squared error (RMSE). We never-
theless compute additional metrics and discuss the suitability of all
of them for the task at hand in Section S.4 of the supplementary
material. We additionally refer the reader to the study by Bylin-
skii et al. [7] for an in-depth analysis of the particularities of each
metric. In our work, we compute each of the metrics following the
implementation proposed by Gutierrez et al. [21], where each pixel
of the saliency maps is weighted by the sine of its latitude, therefore
accounting for the distortion present in 360◦ content.

4.2 Results

We have first evaluated the quality of the audiovisual saliency maps
predicted with AViSal360 with respect to the ground-truth ones.
Figure 5 depicts four sample videos from the D-SAV360 dataset [5];
for each of them we show a sequence of two RGB frames, their cor-
responding audio energy maps (AEMs), and both the ground-truth
and the predicted saliency maps. Each sequence spans 0.53 seconds
of video to show temporal consistency. The first example (top left)
showcases how our model properly leverages information from the
AEMs: The scene is composed of two visually salient clusters of
people, yet only the right-most one is emitting sound. Our model
accurately focuses on it, significantly reducing the predicted atten-
tion over the cluster that emits no sound. In the second example
(top right), our model, while attending to audio cues, also consid-
ers motion: The video shows an indoor cafeteria with moving peo-
ple. AViSal360 can direct its attention to them momentarily, even if
they are not the main sound source, closely mimicking the behavior
captured in the ground truth. Our third example (bottom left) high-
lights our model’s ability to discern the importance of sounds: In
this scene, two people are speaking (left) in a tunnel with high re-
verberation (right). While the AEM points to two sources of sound,
our model can distinguish which of them is actually emitting sound,
directing attention to them, closely resembling the ground truth.
The fourth case shows how our model successfully focuses on the
most salient visual stimuli by taking into account the audio infor-
mation. The attention is correctly directed to the group of people
speaking, ignoring the bright-colored kayak that would be labeled
salient by models focusing on low-level saliency. These four cases
show both outdoor and indoor scenarios, and where audio played
different roles, showcasing our model’s versatility to adapt to each
of them. Please refer to the project page for a web-based browser
showing additional qualitative results from the D-SAV360 dataset.



Figure 5: Qualitative results from AViSal360 for four different videos (in reading order: video 0012, video 1001, video 1018, and video 0014
in the D-SAV360 dataset). We show a sequence of two RGB frames (spanning 0.53 seconds), their corresponding AEMs as insets, and both
the ground-truth and predicted saliency maps. Top left: This example shows our model’s ability to leverage the information from the AEMs to
discern which visually salient features are relevant. Top right: Our model, while attending to audio, is also able to focus on other cues such as
motion. Bottom left: AViSal360 can discern salient audio from reverberation or noise, focusing only on the former. Bottom right: Our model is not
mistakenly diverted by low-level salient features, such as the bright-colored kayak, focusing on the actual salient area where a group of people
are talking. Please refer to the project page for qualitative results on the whole dataset.

4.3 Comparison to Other Approaches

We compare AViSal360 to the three models that represent the
state of the art of audiovisual saliency prediction for 360◦ video:
AVS360 [10], SVGC-AVA [57], and Cokelek et al.’s proposal for
audio inclusion [13] fused with the state-of-the-art model in visual
saliency prediction, SST-Sal [4]. These models have already been
shown to outperform visual-only and non-360◦ approaches thanks
to the inclusion of spatial audio. We used each work’s publicly
available pre-trained model for our comparisons and evaluated their
performance using the metrics described in Section 4.1.

Quantitative results can be found in Table 1, which shows how
AViSal360 outperforms previous approaches by a large margin. To
evaluate whether the improvement of our method over previous
ones is statistically significant, we conduct a Wilcoxon signed-rank
test. This test shows that the differences are indeed statistically sig-
nificant in all cases (p < 0.001). Full results of the test, together
with 95% confidence intervals for the means, can be found in Sec-

tion S.5 of the supplementary material. AVS360 does not include
AEMs in the training phase and Cokelek et al.’s model includes
audio only as a bias during inference time, which we hypothesize
hinders the models’ ability to establish connections between au-
dio and saliency depending on the context of the scene, ultimately
impacting their achieved metrics. On the other hand, SVGC-AVA
does not consider the semantics of audio, which may impact its
ability to properly focus on the salient region. We have further
evaluated the influence of audio on such models and found that
using random audio inputs does not notably affect their final pre-
dictions, suggesting the models may not be fully leveraging spatial
and semantic audio information. Further details on this study can
be found in Section S.5 of the supplementary material. AViSal360
includes both audio spatial and semantic information during train-
ing, which makes it capable of learning meaningful connections
between visual features, audio features, and saliency, overcoming
previous works’ limitations, and yielding superior metrics.



Figure 6: Qualitative comparisons of AViSal360 to AVS360 [10], Cokelek et al. with SST-Sal [13, 4], and SVGC-AVA [57] for two videos (from left
to right: video 0004, and video 0013 in the dataset). We show the sequence of RGB frames, their corresponding AEMs, ground-truth saliency
maps, and the prediction with each method. AViSal360’s predicted saliency better resembles the ground-truth, focusing on the actual salient
elements, while the rest of the approaches do not fully reflect the influence of audio cues or introduce biases that yield inaccurate predictions.

We additionally show qualitative results of our comparisons in
Figure 6. For two different videos from the D-SAV360 dataset, we
show three consecutive RGB frames, their corresponding AEMs,
the ground-truth saliency maps, and the predictions for AViSal360
and the three aforementioned state-of-the-art works. The left video
depicts a case where there exist two visually salient regions (i.e.,
two people to the left, and one person to the right), but only the
rightmost one is emitting sound, thus being the salient one. The
right video shows a case where two people are emitting sound in
the rightmost part of the scene, while some ambient noise sounds

in the left part. AVS360 is strongly influenced by visually salient
stimuli, missing the actual salient regions. Cokelek et al.’s approach
applies a bias to their prediction based on spatial audio, which can
lead to consecutive predictions being inconsistent, and a lack of
spatial accuracy in the prediction. SVGC-AVA presents a strong
center bias, which can cause it to miss the actual salient regions.
In contrast, AViSal360 consistently focuses on the actual salient
regions, correctly considering the relative importance of audio, and
better resembling the ground truth.



Table 1: Quantitative evaluation. Comparison of our proposed
AViSal360 to state-of-the-art audiovisual saliency models. For each
model, we show average mean scores for each of the videos in the
D-SAV360 dataset (and average standard deviation in brackets). Ar-
rows indicate whether higher or lower values represent better perfor-
mance; bold text indicates the best result. Our model achieves the
best score, and differences with respect to the other methods are
statistically significant with p < 0.001 (Wilcoxon signed-rank test, full
results in Section S.5 of the supplementary material).

Model CC ↑ NSS ↑ SIM ↑ RMSE ↓

Cokelek et al. + SST-Sal 0.356 2.414 0.294 0.141
(0.105) (0.815) (0.066) (0.030)

AVS360 0.252 1.544 0.236 0.121
(0.100) (0.665) (0.054) (0.020)

SVGC-AVA 0.248 1.505 0.244 0.094
(0.091) (0.580) (0.051) (0.007)

AViSal360 (Ours) 0.462 3.543 0.339 0.068
(0.116) (1.196) (0.059) (0.015)

4.4 Ablation Studies
We conducted several ablation studies to justify our design choices.
We summarize them here, while detailed quantitative and qualita-
tive results, along with an extended discussion, are available in Sec-
tion S.1 of the supplementary material. First, we compared our pro-
posed AEMs with the traditional ones [37], used in previous audio-
visual saliency models [57, 9], showing how our enhanced AEMs
led to improved saliency predictions. Next, we assessed the im-
pact of including audio branches and our proposed training loss, by
training our model without audio inputs (i.e., removing the audio
branches and using a traditional KLD loss). We observed a drop in
performance, both in the quantitative results (Table 1 in the supple-
mentary) and in the qualitative comparisons (see Figure 1 here, and
Figure 1 in the supplementary): Without auditory information, the
model identifies all individuals and motion in the scene as salient,
whereas our model can distinguish truly salient elements. Addi-
tionally, inspired by Agrawal et al. [1], we further tested the impact
of each of the audio branches by introducing random audio infor-
mation. The resulting decrease in accuracy highlights the model’s
reliance on precise directional and semantic audio information. We
also conduct this evaluation for the state-of-the-art models AVS360
and SVGC-AVA (see Section S.5 of the supplementary material).

5 DISCUSSION

While our model demonstrates a significant advancement in au-
diovisual saliency prediction for 360◦ video, the vast diversity of
possible interactions between visual and auditory elements, each
with its relative importance, and of semantic contexts, including
e.g. narrative and non-narrative scenarios, constitutes a big chal-
lenge. The large dataset we employ enables good performance in
a wide variety of scenarios (see video results in the project page),
but increasing our understanding of how auditory and visual input
combine and integrate to capture human attention in immersive en-
vironments can help improve generality [47, 19]. Further, while we
use a state-of-the-art model to provide a suitable representation of
semantic audio information [20], incorporating newer, more robust
models as they become available could improve performance. Sim-
ilarly, the data we use is collected from a large and diverse popula-
tion sample (87 participants, balanced between female and male),
but the collection of datasets with larger populations could be lever-
aged by our model and help better model inter-user variability.

We have observed that visual features typically focus on smaller,
more specific regions, while spatial audio features extend over
broader areas. Our Audiovisual Fusion module addresses these in-
consistencies by learning the relationships between both visual and
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Figure 7: Limitations. In videos with strong ambient sounds
and no clear visually salient regions, such as this windy rooftop
(video 1008), our model primarily relies on directional audio cues
and struggles to represent the ground truth saliency, which is dis-
tributed across the scene. Please see the text for more details.

auditory distributions. It yields high saliency values in areas where
visual and spatial audio features overlap, while diminishing empha-
sis in other visual areas where there is no sound source. This en-
sures that, despite the broader spatial coverage of audio, AViSal360
preserves the specificity of visual regions. However, some cases are
particularly challenging for our method. Scenarios where the direc-
tion of sound is unclear, such as those with strong ambient noise
(e.g., wind or background sounds) or reverberation. An example of
this can be seen in Figure 7, which corresponds to a video recorded
in a rooftop with strong wind. The model’s pre-trained semantic au-
dio branch, designed to match audio cues with corresponding visual
data, may struggle with these scenarios, in which there are strong
ambient noises that do not have a direct visual counterpart, together
with no highly salient visual elements. Nevertheless, for mild cases
of reverberation or echoes, AViSal360 still achieves a good perfor-
mance if visual regions of interest are present in the scene, e.g.,
bottom-left video in Figure 5. In this scenario, the prediction cor-
rectly focuses on the people at the left of the frame, disregarding the
reverberation coming from the right side, where no visual sources
are evident. We show more examples of these challenging scenarios
in Figure 8 of the supplementary material.

As a saliency prediction model designed for audiovisual 360◦
videos, AViSal360 can enable a variety of applications. For in-
stance, it can be leveraged by compression methods for immersive
video [54], by informing algorithms of regions where more atten-
tion will be placed. Saliency prediction is also a valuable tool for
content generation, contributing to tasks such as editing, content
composition, cut alignment in cinematographic content, or thumb-
nail generation [42, 46, 31, 53]. Incorporating auditory input to
provide robust audiovisual saliency prediction can thus be a rele-
vant asset for the development of engaging virtual experiences.

Conclusion In this work, we have presented AViSal360, a
novel audiovisual saliency prediction model specifically tailored
for 360◦ content with ambisonic audio. In addition to the vi-
sual input, AViSal360 effectively leverages both spatial and se-
mantic audio information, which are known to impact visual at-
tention, achieving more accurate saliency predictions and surpass-
ing the state of the art. To support future research and applica-
tions, both the trained model and code are publicly available at
https://graphics.unizar.es/projects/AViSal360_2024.
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